Важность использования неинвазивной вентиляции легких при новой коронавирусной инфекции (COVID-19)
Abstract
На начальных этапах пандемии новой коронавирусной инфекции (COronaVIrus Disease-19, COVID-19) многие руководства по ведению пациентов не содержали рекомендаций по использованию неинвазивной вентиляции легких (НВЛ) в связи с опасениями, что НВЛ может сопровождаться высокими дыхательными объемами, способными вызвать повреждение легких, и, кроме того, существовало мнение, что НВЛ повышает риск распространения биоаэрозоля, содержащего вирус SARS-CoV-2. В то же время НВЛ достаточно широко используется в реальной клинической практике при ведении тяжелых пациентов с COVID-19 (в некоторых странах – до 60% среди всех методов респираторной поддержки). Накопленный опыт показывает, что при работе с НВЛ риск контаминации вирусными инфекциями сводится к минимуму при адекватном использовании средств индивидуальной защиты. К настоящему времени доступны результаты небольшого числа исследований, посвященных эффективности НВЛ при гипоксемической острой дыхательной недостаточности (ОДН) у пациентов с COVID-19. В большинстве исследований потребность в интубации трахеи и госпитальная летальность, в среднем, составили 20-30%, что позволяет говорить о достаточно высокой эффективности НВЛ при ОДН у пациентов с COVID-19.
About the Author
С. АвдеевRussian Federation
References
1. Zhu N., Zhang D., Wang W., et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Jan 24. N Engl J Med 2020; 382: 727–733.
2. Ruan Q., Yang K., Wang W., et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May; 46(5): 846-848.
3. Intensive Care National Audit and Research Centre. ICNARC report on COVID-19 in critical care 10 April 2020. ICNARC report on COVID-19 in critical care. 10 April 2020. https://www.icnarc.org
4. Richardson S., Hirsch J.S., Narasimhan M., et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020; 323(20): 2052-2059.
5. Hua J., Qian C., Luo Z., et al. Invasive mechanical ventilation in COVID-19 patient management: the experience with 469 patients in Wuhan. Critical Care 2020; 24: 348.
6. Rochwerg B., Brochard L., Elliott M.W., et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50(2): 1602426.
7. Авдеев С.Н. Неинвазивная вентиляция легких при острой дыхательной недостаточности: от клинических рекомендаций – к реальной клинической практике. Пульмонология 2018; 28(1): 32-35.
8. Faculty of Intensive Care Medicine, Intensive Care Society, Association of Anaesthetists and Royal College of Anaesthetists. Critical care preparation and management in the COVID-19 pandemic – 17 March 2020. https://icmanaesthesiacovid-19.org/critical-care-preparation-and-management-in-the-covid-19-pandemic (accessed 25.03.2020).
9. Alhazzani W., Muller M.H., Arabi Y.M., et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020; 46: 854–887.
10. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Interim guidance - 13 March 2020. https://apps.who.int/iris/handle/10665/331446 (accessed 25.03.2020).
11. Crimi C., Noto A., Cortegiani A., et al. Noninvasive respiratory support in acute hypoxemic respiratory failure associated with COVID-19 and other viral infections. Minerva Anestesiol 2020; Nov; 86(11): 1190-1204.
12. Attanasi M., Pasini S., Caronni A., et al. Collaborators for the RECOVER investigators study group. Inpatient care during the COVID-19 pandemic: A survey of Italian physicians. Respiration. 2020; 99(8): 667-677.
13. Lai X., Wang M., Qin C., et al. Coronavirus Disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. JAMA Network Open 2020; 3(5): e209666.
14. Tran K., Cimon K., Severn M., et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One 2012; 7: e35797.
15. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242.
16. Niederman M.S., Richeldi L., Chotirmall S.H., Bai C. Rising to the challenge of the novel SARS-coronavirus-2 (SARS-CoV- 2): advice for pulmonary and critical care and an agenda for research. Am J Respir Crit Care Med 2020, 201(9): 1019–1022.
17. Ferioli M., Cisternino C., Leo V., et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev 2020; 29: 200068.
18. Lyons C., Callaghan M. The use of high-flow nasal oxygen in COVID-19. Anaesthesia 2020; 75: 843–847.
19. Stetzenbach L.D., Buttner M.P., Cruz P. Detection and enumeration of airborne biocontaminants. Curr Opin Biotechnol 2004; 15: 170–174.
20. Hui D.S., Chan M.T., Chow B.K. Aerosol dispersion during various respiratory therapies: a risk assessment model of nosocomial infection to health care workers. Hong Kong Med J 2014; 20 Suppl 4: 9–13.
21. Hui D.S., Chow B.K., Lo T., et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest 2015; 147: 1336-1343.
22. Hui D.S., Chow B.K, Lo T., et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur Respir J 2019; 53: 53 (4): 1802339.
23. Wang T., Tang C., Chen R., et al. Clinical features of coronavirus disease 2019 patients with mechanical ventilation: A nationwide study in China. Crit Care Med 2020; 48(9): e809-e812.
24. Oranger M., Gonzalez-Bermejo J., Dacosta-Noble P., et al. Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur Respir J. 2020 Aug; 56(2): 2001692.
25. Duca A., Memaj I., Zanardi F., et al. Severity of respiratory failure and outcome of patients needing a ventilatory support in the emergency department during Italian novel coronavirus SARS-CoV-2 outbreak: preliminary data on the role of helmet CPAP and non-invasive ventilation. EClinicalMedicine 2020; 24, 100419.
26. Pagano A., Porta G., Bosso G., et al. Non-invasive CPAP in mild and moderate ARDS secondary to SARS-CoV-2. Respiratory Physiology & Neurobiology 2020; 280: 103489.
27. Nightingale R., Nwosu N., Kutubudin F., et al. Is continuous positive airway pressure (CPAP) a new standard of care for type 1 respiratory failure in COVID-19 patients? A retrospective observational study of a dedicated COVID-19 CPAP service. BMJ Open Resp Res 2020; 7: e000639.
28. Burns G.P., Lane N.D., Tedd H.M., et al. Improved survival following wardbased non-invasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: retrospective analysis from a UK teaching hospital. BMJ Open Resp Res 2020; 7: e000621.
29. Aliberti S., Radovanovic D., Billi F., et al. Helmet CPAP treatment in patients with COVID-19 pneumonia: a multicenter, cohort study. Eur Respir J 2020 Oct; 56(4): 2001935.
30. Franco C., Facciolongo N., Tonelli R., et al. Feasibility and clinical impact of out-of-ICU non-invasive respiratory support in patients with COVID-19 related pneumonia. Eur Respir J 2020; Nov; 56(5): 2002130.
31. Avdeev S., Yaroshetskiy A., Tsareva N., et al. Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19. Amer J Emerg Med 2020 Oct 1; S0735-6757(20): 30871-30878.
32. Mukhtar A., Lotfy A., Hasanin A., et al. Outcome of non-invasive ventilation in COVID-19 critically ill patients: A retrospective observational study. Anaesthesia Critical Care & Pain Medicine 2020 Oct; 39(5): 579-580.
33. Gaulton T.G., Bellani G., Foti G., et al. Early clinical experience in using helmet continuous positive airway pressure and high-flow nasal cannula in overweight and obese patients with acute hypoxemic respiratory failure from Coronavirus Disease 2019. Crit Care Explor 2020; 2(9): e0216.
34. Menzella F., Fontana M., Salvarani C., et al. Efficacy of tocilizumab in patients with COVID-19 ARDS undergoing noninvasive ventilation. Critical Care 2020 Sep 29; 24(1): 589.
35. Noeman-Ahmed Y., Gokaraju S., Powrie D.J., et al. Predictors of CPAP outcome in hospitalized COVID-19 patients. Respirology 2020; 25(12): 1316-1319.
36. Vaschetto R., Barone-Adesi F., Racca F., et al. Outcomes of COVID-19 patients treated with continuous positive airway pressure outside ICU. ERJ Open Res 2020 Oct 30: 00541-2020.
37. Antonelli M., Conti G., Moro M.L., et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27: 1718–1728.
38. HFNC and NIV for COVID-19 complicated by respiratory failure. ClinicalTrials.gov identifier: NCT04452708. https://clinicaltrials.gov/ct2/show/NCT04452708 (accessed 10.10.2020).
39. Perkins G.D., Couper K., Connolly B., et al. RECOVERY- Respiratory Support: Respiratory Strategies for patients with suspected or proven COVID-19 respiratory failure; Continuous Positive Airway Pressure, High-flow Nasal Oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21: 687.
Review
For citations:
. National Health Care (Russia). 2020;1(1):33-38. (In Russ.)