The possibilities of big data in pharmacoepidemiology, problems of use, legal regulation
https://doi.org/10.47093/2713-069X.2024.5.2.25-35
Abstract
The growth of digitalization in medicine has significantly expanded the possibilities of using big data in pharmacoepidemiology. The use of big data makes it possible to reduce the cost of clinical research, increase the speed of recruitment and expand the sample, makes it possible to evaluate the effect of drugs in pregnant women and effectiveness in rare diseases. The databases PubMed, Scopus, Web of Science and Google Scholar for 12 years from 2012 to 2023, United Nations documents, World Health Organization, Federal laws of the Russian Federation in the field of artificial intelligence, protection of confidential information, and clinical research were analyzed. The search was carried out by keywords: «big data», «registers», «pharmacoepidemiology», «personal data», «legal regulation», «protection methods». The article provides examples of the use of big data in healthcare, including from 25 to 50 million people. The analysis of the literature data revealed the same type of problems – the lack of uniformity in the introduction of information, incomplete information, limited availability. The review identifies the problems of protecting the confidentiality of information. The mechanisms of information standardization, storage, and data processing are considered. The international and Russian legislative framework regulating the conduct of clinical trials using big data is presented.
About the Authors
N. V. OrlovaRussian Federation
Natalya V. Orlova – Dr. of Sci. (Medicine), Professor, Department of Faculty Therapy, Faculty of Pediatrics
Ostrovityanova str., 1, Moscow, 117513
G. N. Suvorov
Russian Federation
Georgy N. Suvorov – Cand. of Sci. (Jurid.), Associate Professor, epartment of Hospital Epidemiology, Medical Parasitology and Tropical Diseases; Deputy Director for Science and Network Interaction
Barricadnaya str., 2/1, building 1, Moscow, 125993
Tverskoy Boulevard, 13/1, Moscow, 123104
N. D. Karseladze
Russian Federation
Natalia D. Karseladze – Cand. of Sci. (Medicine), therapist
1а, Moscow region, 142014
Yu. Yu. Yakushev
Russian Federation
Yuri Yu. Yakushev – 6th year student
Ostrovityanova str., 1, Moscow, 117513
T. V. Gololobova
Russian Federation
Tatyana V. Gololobova – Dr. of Sci. (Medicine), Associate Professor, Head of the Department of Hospital Epidemiology, Medical Parasitology and Tropical Diseases; Deputy Director for Scientific Work
Barricadnaya str., 2/1, building 1, Moscow, 125993
Volokolamsk highway, 75/1, Moscow, 125424
References
1. Issa A.M., Carleton B., Gerhard T., et al. Pharmacoepidemiology: A time for a new multidisciplinary approach to precision medicine. Pharmacoepidemiol Drug Saf. 2021; 30(8): 985–992. https://doi.org/10.1002/pds.5226
2. Montastruc J.L, Benevent J., Montastruc F., et al. What is pharmacoepidemiology? Definition, methods, interest and clinical applications. Therapie. 2019; 74(2): 169–174. https://doi.org/10.1016/j.therap.2018.08.001
3. Raghupathi W., Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014; 2(3): 1–10. https://doi.org/10.1186/2047-2501-2-3
4. Burden A.M. Pharmacoepidemiology and Big Data Analytics: Challenges and Opportunities when Moving towards Precision Medicine. Chimia (Aarau). 2019; 73(12): 1012–1017. https://doi.org/10.2533/chimia.2019.1012
5. Goldina T.A., Kolbin A.S., Belousov D.Yu., Borovskaya V.G. Review of real-world data study. Good Clinical Practice. 2021; 1: 56–63 (In Russian). https://doi.org/10.37489/2588-0519-2021-1-56-63
6. Mehta N., Pandit A., Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019; 100: 103311. https://doi.org/10.1016/j.jbi.2019.103311
7. Benevent J., Araujo M., Hurault-Delarue C., et al. Pharmacoepidemiology in pregnancy. Therapie. 2019; 74(2): 289–300. https://doi.org/10.1016/j.therap.2018.11.014
8. Belleudi V., Fortinguerra F., Poggi F.R., et al. The Italian Network for Monitoring Medication Use During Pregnancy (MoM-Net): Experience and Perspectives. Front Pharmacol. 2021; 12: 699062. https://doi.org/10.3389/fphar.2021.699062
9. Fairlie L., Lavies D., Kalk E., et al. Safety surveillance for PrEP in pregnant and breastfeeding women. Front Reprod Health. 2023; 5: 1221101. https://doi.org/10.3389/frph.2023.1221101
10. Charlton R.A., Neville A.J., Jordan S., et al. Healthcare databases in Europe for studying medicine use and safety during pregnancy. Pharmacoepidemiology and Drug Safety. 2014; 23(6): 586–594. https://doi.org/10.1002/pds.3613
11. Yoshida S., Takeuchi M., Tanaka-Mizuno S., et al. Clinical epidemiology and pharmacoepidemiology studies with real-world databases. Proceedings of the Japan Academy, Series B. 2022; 98(10): 517–528. https://doi.org/10.2183/pjab.98.026
12. Lapeyre-Mestre M. The challenges of pharmacoepidemiology of orphan drugs in rare diseases. Therapie. 2020; 75(2): 215–220. https://doi.org/10.1016/j.therap.2020.02.013
13. Matsubayashi K., Kawakami K. Prevalence, incidence, comorbidities, and treatment patterns among Japanese patients with acromegaly: a descriptive study using a nationwide claims database. Endocrine Journal. 2020; 67(10): 997–1006. https://doi.org/10.1507/endocrj.EJ20-0129
14. De Germay S., Berdaï D., Noize P. Pharmacoepidemiology for oncology clinical practice: Foundations, state of the art and perspectives. Therapie. 2022; 77(2): 229–240. https:// doi.org/10.1016/j.therap.2021.08.001
15. Scosyrev E., Messing J., Noyes K., et al. Surveillance Epidemiology and End Results (SEER) program and population-based research in urologic oncology: an overview. Urol Oncol. 2012; 30(2): 126–132. https://doi.org/10.1016/j.urolonc.2009.11.005
16. Taylor J.S., He W., Harrison R., et al. Disparities in treatment and survival among elderly ovarian cancer patients. Gynecol Oncol. 2018; 151(2): 269–274. https://doi.org/10.1016/j.ygyno.2018.08.041
17. Ma H., Sun H., Sun X. Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: a SEER analysis. Scientific Reports. 2014; 4: 4227. https://doi.org/10.1038/srep04227
18. Yang J., Li Y., Liu Q., et al. Brief introduction of medical database and data mining technology in big data era. Journal of Evidence-Based Medicine. 2020; 13(1): 57–69. https://doi.org/10.1111/jebm.12373
19. Suh E., Stratton K.L., Leisenring W.M., et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020; 21(3): 421–435. https://doi.org/10.1016/S1470-2045(19)30800-9
20. Tikellis G., Dwyer T., Paltiel O., et al. International Childhood Cancer Cohort Consortium. The International Childhood Cancer Cohort Consortium (I4C): A research platform of prospective cohorts for studying the aetiology of childhood cancers. Paediatric Perinatal Epidemiology. 2018; 32(6): 568–583. https://doi.org/10.1111/ppe.12519
21. Van Kalsbeek R.J., Hudson M.M., Mulder R.L., et al. International Childhood Cancer Outcome Project participants. A joint international consensus statement for measuring quality of survival for patients with childhood cancer. Nat Med. 2023; 29(6): 1340– 1348. https://doi.org/10.1038/s41591-023-02339-y
22. Gault N., Castañeda-Sanabria J., De Rycke Y., et al. Self-controlled designs in pharmacoepidemiology involving electronic healthcare databases: a systematic review. BMC Medical Research Methodology. 2017; 17(1): 25. https://doi.org/10.1186/s12874-016-0278-0
23. Pariente A., Bezin J. Evaluation of Covid-19 vaccines: Pharmacoepidemiological aspects. Therapie. 2021; 76(4): 305–309. https://doi.org/10.1016/j.therap.2021.05.002
24. Hillus D., Schwars T., Tober-Lau P., et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. The Lancet. Respiratory Medicine. 2021; 9(11): 12551265. https://doi.org/10.1016/S2213-2600(21)00357-X
25. Duszynski K.M., Stark J.H., Cohet C., et al. Suitability of databases in the Asia-Pacific for collaborative monitoring of vaccine safety. Pharmacoepidemiology and Drug Safety. 2021; 30(7): 843–857. https://doi.org/10.1002/pds.5214
26. Kendell C., Levy A.R., Porter G., et al. Factors affecting access to administrative health data for research in Canada: a study protocol. Int J Popul Data Sci. 2021; 6(1): 1653. https://doi.org/10.23889/ijpds.v6i1.1653
27. Davis K.A.S., Farooq S., Hayes J.F., et al. Pharmacoepidemiology research: delivering evidence about drug safety and effectiveness in mental health. Lancet Psychiatry. 2020; 7(4): 363–370. https://doi.org/10.1016/S2215-0366(19)30298-6
28. Raspa M., Moultrie R., Wagner L., et al. Ethical, Legal, and Social Issues Related to the Inclusion of Individuals With Intellectual Disabilities in Electronic Health Record Research: Scoping Review. J Med Internet Res. 2020; 22(5): e16734. https://doi.org/10.2196/16734
29. Wylie J.E., Mineau G.P. Biomedical databases: protecting privacy and promoting research. Trends Biotechnol. 2003; 21(3): 113–116. https://doi.org/10.1016/S0167-7799(02)00039-2
30. Kumamaru H., Togo K., Kimura T., et al. Inventory of real-world data sources in Japan: Annual survey conducted by the Japanese Society for Pharmacoepidemiology Task Force. Pharmacoepidemiol Drug Saf. 2023; 33(1): e5680. https://doi.org/10.1002/pds.5680
31. Trifirò G., Coloma P.M., Rijnbeek P.R., et al. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how? Journal of Internal Medicine. 2014; 275(6): 551–561. https://doi.org/10.1111/joim.12159
32. Franco J.S., Vizcaya D. Availability of secondary healthcare data for conducting pharmacoepidemiology studies in Colombia: A systematic review. Pharmacol Res Perspect. 2014; 8(5): e00661. https://doi.org/10.1002/prp2.66
33. Chen Y., Zivkovic M., Wang T., et al. A Systematic Review of Coding Systems Used in Pharmacoepidemiology and Database Research. Methods Inf Med. 2018; 57(1): 1–42. https://doi.org/10.3414/ME17-05-0006
34. Leufkens H.G. Privacy issues in pharmacoepidemiology: the importance of weighing costs and benefits. Pharmacoepidemiol Drug Saf. 2002; 10(7): 659–662. https://doi.org/10.1002/pds.645
35. Rivera D.R., Gokhale M.N., Reynolds M.W., et al. Linking electronic health data in pharmacoepidemiology: Appropriateness and feasibility. Pharmacoepidemiol Drug Saf. 2020; 29(1): 18–29. https://doi.org/10.1002/pds.4918
36. Abouelmehdi K., Beni-Hessane A., Khaloufi H. Big healthcare data: preserving security and privacy. Journal of Big Data. 2018; 5: 1. https://doi.org/10.1186/s40537-017-0110-7
37. Ritsu S. Recommendations on the ethical aspects of artificial intelligence in the application to the field of labor relations. Journal of Digital Technologies and Law. 2023; 1(2): 498–519 (In Russian). https://doi.org/10.21202/jdtl.2023.21
38. Alonso-Betanzos A., Bolón-Canedo V. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Adv Exp Med Biol. 2018; 1065: 607–626. https://doi.org/10.1007/978-3-319-77932-4_37
Review
For citations:
Orlova N.V., Suvorov G.N., Karseladze N.D., Yakushev Yu.Yu., Gololobova T.V. The possibilities of big data in pharmacoepidemiology, problems of use, legal regulation. National Health Care (Russia). 2024;5(2):25-35. (In Russ.) https://doi.org/10.47093/2713-069X.2024.5.2.25-35