Preview

National Health Care (Russia)

Advanced search

The possibilities of big data in pharmacoepidemiology, problems of use, legal regulation

https://doi.org/10.47093/2713-069X.2024.5.2.25-35

Abstract

The growth of digitalization in medicine has significantly expanded the possibilities of using big data in pharmacoepidemiology. The use of big data makes it possible to reduce the cost of clinical research, increase the speed of recruitment and expand the sample, makes it possible to evaluate the effect of drugs in pregnant women and effectiveness in rare diseases. The databases PubMed, Scopus, Web of Science and Google Scholar for 12 years from 2012 to 2023, United Nations documents, World Health Organization, Federal laws of the Russian Federation in the field of artificial intelligence, protection of confidential information, and clinical research were analyzed. The search was carried out by keywords: «big data», «registers», «pharmacoepidemiology», «personal data», «legal regulation», «protection methods». The article provides examples of the use of big data in healthcare, including from 25 to 50 million people. The analysis of the literature data revealed the same type of problems – the lack of uniformity in the introduction of information, incomplete information, limited availability. The review identifies the problems of protecting the confidentiality of information. The mechanisms of information standardization, storage, and data processing are considered. The international and Russian legislative framework regulating the conduct of clinical trials using big data is presented.

About the Authors

N. V. Orlova
N.I. Pirogov Russian National Research Medical University
Russian Federation

Natalya V. Orlova – Dr. of Sci. (Medicine), Professor, Department of Faculty Therapy, Faculty of Pediatrics

Ostrovityanova str., 1, Moscow, 117513



G. N. Suvorov
Russian Medical Academy of Continuing Professional Education; Center for Sociological Research
Russian Federation

Georgy N. Suvorov – Cand. of Sci. (Jurid.), Associate Professor, epartment of Hospital Epidemiology, Medical Parasitology and Tropical Diseases; Deputy Director for Science and Network Interaction

Barricadnaya str., 2/1, building 1, Moscow, 125993

Tverskoy Boulevard, 13/1, Moscow, 123104



N. D. Karseladze
Medical Center DMEMED, M.V. Lomonosov Airport Domodedovo
Russian Federation

Natalia D. Karseladze – Cand. of Sci. (Medicine), therapist

1а, Moscow region, 142014



Yu. Yu. Yakushev
N.I. Pirogov Russian National Research Medical University
Russian Federation

Yuri Yu. Yakushev – 6th year student

Ostrovityanova str., 1, Moscow, 117513



T. V. Gololobova
Russian Medical Academy of Continuing Professional Education; State Scientific Research Institute of Biological Instrumentation FMBA of Russia
Russian Federation

Tatyana V. Gololobova – Dr. of Sci. (Medicine), Associate Professor, Head of the Department of Hospital Epidemiology, Medical Parasitology and Tropical Diseases; Deputy Director for Scientific Work

Barricadnaya str., 2/1, building 1, Moscow, 125993

Volokolamsk highway, 75/1, Moscow, 125424



References

1. Issa A.M., Carleton B., Gerhard T., et al. Pharmacoepidemiology: A time for a new multidisciplinary approach to precision medicine. Pharmacoepidemiol Drug Saf. 2021; 30(8): 985–992. https://doi.org/10.1002/pds.5226

2. Montastruc J.L, Benevent J., Montastruc F., et al. What is pharmacoepidemiology? Definition, methods, interest and clinical applications. Therapie. 2019; 74(2): 169–174. https://doi.org/10.1016/j.therap.2018.08.001

3. Raghupathi W., Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014; 2(3): 1–10. https://doi.org/10.1186/2047-2501-2-3

4. Burden A.M. Pharmacoepidemiology and Big Data Analytics: Challenges and Opportunities when Moving towards Precision Medicine. Chimia (Aarau). 2019; 73(12): 1012–1017. https://doi.org/10.2533/chimia.2019.1012

5. Goldina T.A., Kolbin A.S., Belousov D.Yu., Borovskaya V.G. Review of real-world data study. Good Clinical Practice. 2021; 1: 56–63 (In Russian). https://doi.org/10.37489/2588-0519-2021-1-56-63

6. Mehta N., Pandit A., Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019; 100: 103311. https://doi.org/10.1016/j.jbi.2019.103311

7. Benevent J., Araujo M., Hurault-Delarue C., et al. Pharmacoepidemiology in pregnancy. Therapie. 2019; 74(2): 289–300. https://doi.org/10.1016/j.therap.2018.11.014

8. Belleudi V., Fortinguerra F., Poggi F.R., et al. The Italian Network for Monitoring Medication Use During Pregnancy (MoM-Net): Experience and Perspectives. Front Pharmacol. 2021; 12: 699062. https://doi.org/10.3389/fphar.2021.699062

9. Fairlie L., Lavies D., Kalk E., et al. Safety surveillance for PrEP in pregnant and breastfeeding women. Front Reprod Health. 2023; 5: 1221101. https://doi.org/10.3389/frph.2023.1221101

10. Charlton R.A., Neville A.J., Jordan S., et al. Healthcare databases in Europe for studying medicine use and safety during pregnancy. Pharmacoepidemiology and Drug Safety. 2014; 23(6): 586–594. https://doi.org/10.1002/pds.3613

11. Yoshida S., Takeuchi M., Tanaka-Mizuno S., et al. Clinical epidemiology and pharmacoepidemiology studies with real-world databases. Proceedings of the Japan Academy, Series B. 2022; 98(10): 517–528. https://doi.org/10.2183/pjab.98.026

12. Lapeyre-Mestre M. The challenges of pharmacoepidemiology of orphan drugs in rare diseases. Therapie. 2020; 75(2): 215–220. https://doi.org/10.1016/j.therap.2020.02.013

13. Matsubayashi K., Kawakami K. Prevalence, incidence, comorbidities, and treatment patterns among Japanese patients with acromegaly: a descriptive study using a nationwide claims database. Endocrine Journal. 2020; 67(10): 997–1006. https://doi.org/10.1507/endocrj.EJ20-0129

14. De Germay S., Berdaï D., Noize P. Pharmacoepidemiology for oncology clinical practice: Foundations, state of the art and perspectives. Therapie. 2022; 77(2): 229–240. https:// doi.org/10.1016/j.therap.2021.08.001

15. Scosyrev E., Messing J., Noyes K., et al. Surveillance Epidemiology and End Results (SEER) program and population-based research in urologic oncology: an overview. Urol Oncol. 2012; 30(2): 126–132. https://doi.org/10.1016/j.urolonc.2009.11.005

16. Taylor J.S., He W., Harrison R., et al. Disparities in treatment and survival among elderly ovarian cancer patients. Gynecol Oncol. 2018; 151(2): 269–274. https://doi.org/10.1016/j.ygyno.2018.08.041

17. Ma H., Sun H., Sun X. Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: a SEER analysis. Scientific Reports. 2014; 4: 4227. https://doi.org/10.1038/srep04227

18. Yang J., Li Y., Liu Q., et al. Brief introduction of medical database and data mining technology in big data era. Journal of Evidence-Based Medicine. 2020; 13(1): 57–69. https://doi.org/10.1111/jebm.12373

19. Suh E., Stratton K.L., Leisenring W.M., et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020; 21(3): 421–435. https://doi.org/10.1016/S1470-2045(19)30800-9

20. Tikellis G., Dwyer T., Paltiel O., et al. International Childhood Cancer Cohort Consortium. The International Childhood Cancer Cohort Consortium (I4C): A research platform of prospective cohorts for studying the aetiology of childhood cancers. Paediatric Perinatal Epidemiology. 2018; 32(6): 568–583. https://doi.org/10.1111/ppe.12519

21. Van Kalsbeek R.J., Hudson M.M., Mulder R.L., et al. International Childhood Cancer Outcome Project participants. A joint international consensus statement for measuring quality of survival for patients with childhood cancer. Nat Med. 2023; 29(6): 1340– 1348. https://doi.org/10.1038/s41591-023-02339-y

22. Gault N., Castañeda-Sanabria J., De Rycke Y., et al. Self-controlled designs in pharmacoepidemiology involving electronic healthcare databases: a systematic review. BMC Medical Research Methodology. 2017; 17(1): 25. https://doi.org/10.1186/s12874-016-0278-0

23. Pariente A., Bezin J. Evaluation of Covid-19 vaccines: Pharmacoepidemiological aspects. Therapie. 2021; 76(4): 305–309. https://doi.org/10.1016/j.therap.2021.05.002

24. Hillus D., Schwars T., Tober-Lau P., et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. The Lancet. Respiratory Medicine. 2021; 9(11): 12551265. https://doi.org/10.1016/S2213-2600(21)00357-X

25. Duszynski K.M., Stark J.H., Cohet C., et al. Suitability of databases in the Asia-Pacific for collaborative monitoring of vaccine safety. Pharmacoepidemiology and Drug Safety. 2021; 30(7): 843–857. https://doi.org/10.1002/pds.5214

26. Kendell C., Levy A.R., Porter G., et al. Factors affecting access to administrative health data for research in Canada: a study protocol. Int J Popul Data Sci. 2021; 6(1): 1653. https://doi.org/10.23889/ijpds.v6i1.1653

27. Davis K.A.S., Farooq S., Hayes J.F., et al. Pharmacoepidemiology research: delivering evidence about drug safety and effectiveness in mental health. Lancet Psychiatry. 2020; 7(4): 363–370. https://doi.org/10.1016/S2215-0366(19)30298-6

28. Raspa M., Moultrie R., Wagner L., et al. Ethical, Legal, and Social Issues Related to the Inclusion of Individuals With Intellectual Disabilities in Electronic Health Record Research: Scoping Review. J Med Internet Res. 2020; 22(5): e16734. https://doi.org/10.2196/16734

29. Wylie J.E., Mineau G.P. Biomedical databases: protecting privacy and promoting research. Trends Biotechnol. 2003; 21(3): 113–116. https://doi.org/10.1016/S0167-7799(02)00039-2

30. Kumamaru H., Togo K., Kimura T., et al. Inventory of real-world data sources in Japan: Annual survey conducted by the Japanese Society for Pharmacoepidemiology Task Force. Pharmacoepidemiol Drug Saf. 2023; 33(1): e5680. https://doi.org/10.1002/pds.5680

31. Trifirò G., Coloma P.M., Rijnbeek P.R., et al. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how? Journal of Internal Medicine. 2014; 275(6): 551–561. https://doi.org/10.1111/joim.12159

32. Franco J.S., Vizcaya D. Availability of secondary healthcare data for conducting pharmacoepidemiology studies in Colombia: A systematic review. Pharmacol Res Perspect. 2014; 8(5): e00661. https://doi.org/10.1002/prp2.66

33. Chen Y., Zivkovic M., Wang T., et al. A Systematic Review of Coding Systems Used in Pharmacoepidemiology and Database Research. Methods Inf Med. 2018; 57(1): 1–42. https://doi.org/10.3414/ME17-05-0006

34. Leufkens H.G. Privacy issues in pharmacoepidemiology: the importance of weighing costs and benefits. Pharmacoepidemiol Drug Saf. 2002; 10(7): 659–662. https://doi.org/10.1002/pds.645

35. Rivera D.R., Gokhale M.N., Reynolds M.W., et al. Linking electronic health data in pharmacoepidemiology: Appropriateness and feasibility. Pharmacoepidemiol Drug Saf. 2020; 29(1): 18–29. https://doi.org/10.1002/pds.4918

36. Abouelmehdi K., Beni-Hessane A., Khaloufi H. Big healthcare data: preserving security and privacy. Journal of Big Data. 2018; 5: 1. https://doi.org/10.1186/s40537-017-0110-7

37. Ritsu S. Recommendations on the ethical aspects of artificial intelligence in the application to the field of labor relations. Journal of Digital Technologies and Law. 2023; 1(2): 498–519 (In Russian). https://doi.org/10.21202/jdtl.2023.21

38. Alonso-Betanzos A., Bolón-Canedo V. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Adv Exp Med Biol. 2018; 1065: 607–626. https://doi.org/10.1007/978-3-319-77932-4_37


Review

For citations:


Orlova N.V., Suvorov G.N., Karseladze N.D., Yakushev Yu.Yu., Gololobova T.V. The possibilities of big data in pharmacoepidemiology, problems of use, legal regulation. National Health Care (Russia). 2024;5(2):25-35. (In Russ.) https://doi.org/10.47093/2713-069X.2024.5.2.25-35

Views: 664


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-069X (Print)
ISSN 2713-0703 (Online)